Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
COVID ; 2(11):1594-1608, 2022.
Article in English | MDPI | ID: covidwho-2109969

ABSTRACT

The present study examined the prevalence and correlates of psychosocial impairment in a large, national sample of Peruvian children and adolescents (ages 5.0–17.9) during the COVID-19 pandemic in late 2020. A sample of 8263 online questionnaires were completed by caregivers in Peru between October 23rd–November 26th, 2020. In addition to sociodemographic and pandemic-related factors, the survey administered the Peruvian Spanish version of the Pediatric Symptom Checklist (PSC-17) to assess child psychosocial risk. The Patient Health Questionnaire (PHQ-9), Kessler-6 (K-6), and Brief Resilience Scale (BRS-6) assessed caregiver depression, psychological distress, and resilience, respectively. In this case, 33% of the children were at overall risk on the PSC-17. In adjusted models, caregiver distress, depression, and low resilience, as well as having a family member with a health risk factor were the strongest predictors of child psychosocial risk, accounting for nearly 1.2 to 2.1 times the likelihood of risk individually and 2.4 to 3.4 times the likelihood of risk when summed. Due to the opt-in sampling method, the obtained sample was likely skewed toward more advantaged families, suggesting that the study's high prevalence of PSC-17 positivity might have been even higher in a more economically representative sample. Given the prevalence of psychosocial problems in Peruvian youth during COVID-19, preventive interventions, with a special focus on family-level approaches that involve and support parents as well as children, are clearly warranted.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2146712.v1

ABSTRACT

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.18.22271199

ABSTRACT

Control of SARS-CoV-2 (SCV-2) transmission is a major priority that requires understanding SCV-2 replication dynamics. We developed and validated novel droplet digital PCR (ddPCR) assays to quantify SCV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from full-length genomic RNAs (gRNAs) in a multiplexed format. We applied this multiplex ddPCR assay to 144 cross-sectional nasopharyngeal samples. sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio of sgRNA:gRNA was remarkably stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Interestingly, adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Longitudinal daily testing of 6 persons for up to 14 days revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. Further, sgRNA:gRNA is constant during infection despite changes in viral culture. These data indicate stable viral transcription during infection. More work is needed to understand why cultures are negative despite persistence of viral RNAs.


Subject(s)
Severe Acute Respiratory Syndrome
4.
Sustainability ; 13(21):12235, 2021.
Article in English | MDPI | ID: covidwho-1502520

ABSTRACT

COVID-19 has had wide-ranging impacts on organisations with the potential to disrupt efforts to decarbonise their operations. To understand how COVID-19 has affected the climate change mitigation strategies of Airport Operators (AOs), questionnaires and semi-structured interviews with Sustainability Managers were undertaken in late 2020 amidst a period of disruption. While all reported that COVID-19 impacted delivery of interventions and projects to mitigate climate change, the majority stated that it would not impact their long-term climate goals, such as Net Zero by 2050. The most popular climate change mitigation interventions AOs intend to deploy between now and 2030 are on-site renewables and Electric Vehicles and related infrastructure. Engineered carbon removal interventions were considered highly unlikely to be deployed in this timeframe, with potential implications for Net Zero decarbonisation pathways. Despite the severe impacts of COVID-19 on the sector, results indicate that AOs remain committed to decarbonisation, with climate change action remaining the key priority for airports. Given ongoing financial and resource constraints, AOs will need to explore new business models and partnerships and nurture collaborative approaches with other aviation stakeholders to not only maintain progress toward Net Zero but “build back better”. Government support will also be needed to stimulate the development of a sustainable, resilient, low-carbon aviation system.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.10.459744

ABSTRACT

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is therefore paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, and Delta, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by multiple VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.15.444222

ABSTRACT

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40{degrees}C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.


Subject(s)
Blood Platelet Disorders , Severe Acute Respiratory Syndrome
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.10.430696

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.


Subject(s)
COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.25.20238592

ABSTRACT

Understanding immune responses following SARS-CoV-2 infection in relation to COVID-19 severity is critical to predicting the effects of long-term immunological memory on viral spread. Here we longitudinally assessed systemic and airway immune responses against SARS-CoV-2 in a well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity; from asymptomatic infection to fatal disease. High systemic and airway antibody responses were elicited in patients with moderate to severe disease, and while systemic IgG levels were maintained after acute disease, airway IgG and IgA declined significantly. In contrast, individuals with mild symptoms showed significantly lower antibody responses but their levels of antigen-specific memory B cells were comparable with those observed in patients with moderate to severe disease. This suggests that antibodies in the airways may not be maintained at levels that prevent local virus entry upon re-exposure and therefore protection via activation of the memory B cell pool is critical.


Subject(s)
COVID-19 , Acute Disease
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.11.247395

ABSTRACT

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.


Subject(s)
Respiratory Tract Diseases
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.26.20114124

ABSTRACT

Children are strikingly underrepresented in COVID-19 case counts. In the United States, children represent 22% of the population but only 1.7% of confirmed SARS-CoV-2 cases. One possibility is that symptom-based viral testing is less likely to identify infected children, since they often experience milder disease than adults. To better assess the frequency of pediatric SARS-CoV-2 infection, we serologically screened 1,775 residual samples from Seattle Children's Hospital collected from 1,076 children seeking medical care during March and April of 2020. Only one child was seropositive in March, but nine were seropositive in April for a period seroprevalence of >1%. Most seropositive children (8/10) were not suspected of having had COVID-19. The sera of most seropositive children had neutralizing activity, including one that neutralized at a dilution >1:18,000. Therefore, among children seeking medical care, the frequency of SARS-CoV-2 infection increased markedly during the early Seattle outbreak despite few positive viral tests.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.20.051219

ABSTRACT

SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral and VSV particles, but the reagents and protocols are not widely available. Here we detail how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also make all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrate how these pseudotyped lentiviral particles can be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL